
LA-UR 95-1504

Approved for public release; distribution is unlimited

Approximation Algorithms for PSPACE-Hard
Hierarchically and Periodically-specified

Problems

Authors: M.V. Marathe, H.B. Hunt III, R.E. Stearns,
V. Radhakrishnan

LOS ALAMOS
NATIONAL LABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under
contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that
the U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher
identify this article as work performed under the auspices of the U.S. Department of
Energy. The Los Alamos National Laboratory strongly supports academic freedom and
a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse this viewpoint of a publication or guarantee its technical correctness.

Approximation Algorithms for PSPACE-Hard Hierarchically

and Periodically Speci�ed Problems

Madhav V. Marathe 3 Harry B. Hunt III 1 Richard E. Stearns 1 Venkatesh Radhakrishnan 2

Abstract

We study the e�cient approximability of basic graph and logic problems in the literature
when instances are speci�ed hierarchically as in [Le89] or are speci�ed by 1-dimensional �nite
narrow periodic speci�cations as in [Wa93]. We show that, for most of the problems �
considered when speci�ed using k-level-restricted hierarchical speci�cations or k-narrow
periodic speci�cations, the following holds:

� Let � be any performance guarantee of a polynomial time approximation algorithm for
�, when instances are speci�ed using standard speci�cations. Then 8� > 0, � has a
polynomial time approximation algorithm with performance guarantee (1 + �)�.

� � has a polynomial time approximation scheme when restricted to planar instances.

These are the �rst polynomial time approximation schemes for PSPACE-hard hierarchi-
cally or periodically speci�ed problems. Since several of the problems considered are PSPACE-
hard, our results provide the �rst examples of natural PSPACE-hard optimization problems
that have polynomial time approximation schemes. This answers an open question in Condon
et. al. [CF+93].

Keywords. hierarchical speci�cations, periodic speci�cations, PSPACE-hardness, approxi-
mation algorithms, computational complexity, CAD systems, VLSI design.

AMS(MOS) subject classi�cation. 68R10, 68Q15, 68Q25, 05C40.

1Email addresses: fhunt,resg@cs.albany.edu. Department of Computer Science, University at Albany -

SUNY, Albany, NY 12222. Supported by NSF Grants CCR 89-03319 and CCR 94-06611.
2Mailstop 47LA, Hewlett-Packard Company, 19447 Pruneridge Avenue, Cupertino, California 95014-9913.

Email: rven@cup.hp.com
3Part of the research was done when the author was at SUNY-Albany, and was supported by NSF Grant

CCR 94-06611. Current address: P.O. Box 1663, MS K990, Los Alamos National Laboratory, Los Alamos NM

87545. Email: madhav@c3.lanl.gov. The work is supported by the Department of Energy under Contract

W-7405-ENG-36.
4A preliminary version of this paper appeared in the Proc. 26th ACM Annual Symposium on Theory of

Computing (STOC), 1994, pp. 468-477.

1 Introduction and motivation

Many practical applications of graph theory and combinatorial optimization in CAD systems,

mechanical engineering, VLSI design and software engineering involve processing large ob-

jects constructed in a systematic manner from smaller and more manageable components.

An important example of this occurs in VLSI technology. Currently, VLSI circuits can

consist of millions of transistors. But such large circuits usually have a highly regular de-

sign and consequently are de�ned systematically, in terms of smaller circuits. As a result,

the graphs that abstract the structure and operation of the underlying circuits (designs)

also have a regular structure and are de�ned systematically in terms of smaller graphs.

Methods for describing large but regular objects by small descriptions are referred to as

succinct speci�cations. Over the last twenty years several theoretical models have been

put forward to succinctly represent objects such as graphs and circuits. (see for example

[BOW83, CM91, Ga82, HW92, IS87, KMW67, KO91, Le88, Or82a, Or84b, Wa84]). Here, we

study two kinds of succinct speci�cations, namely, hierarchical and periodic speci�cations.

Hierarchical speci�cations allow the overall design of an object to be partitioned into the

design of a collection of modules; which is a much more manageable task than producing a

complete design in one step. Such a top down (or hierarchical design) approach also facilitates

the development of computer aided design (CAD) systems, since low-level objects can be in-

corporated into libraries and can thus be made available as submodules to designers of large

scale objects. Other areas where hierarchical speci�cations have found applications are VLSI

design and layout [HLW92, HW92, RH93], �nite element analysis, software engineering and

datalog queries (see [HLW92, Ma94] and the references therein). Periodic speci�cations can

also be used to de�ne large scale systems with highly regular structures. Using periodic spec-

i�cations, large objects are described as repetitive connections of a basic module. Frequently,

the modules are connected in a linear fashion, but the basic modules can also be repeated in

two or higher dimensional patterns. Periodic speci�cations are also used to model time variant

problems, where the constraints or demands for any one period is the same as those for pre-

ceding or succeeding periods. Periodic speci�cations have applications in such diverse areas

as transportation planning [Or82a, HLW92, Ma94], parallel programming [HLW92, KMW67]

and VLSI design [IS87, IS88].

Typically, the kinds of hierarchical and periodic speci�cations studied in the literature are

generalizations of standard speci�cations used to describe objects. An important feature of

both these kinds of speci�cations is that they can be much more concise in describing objects

than standard speci�cations. In particular, the size of an object can be exponential in the size

of its periodic or hierarchical speci�cations. As a result of this, problems for hierarchically

and periodically speci�ed inputs often become PSPACE-hard, NEXPTIME-hard, etc.

In this paper, we concentrate our attention on (i) the hierarchical speci�cations of Lengauer

[Le86, Le88, Le89] (referred to as L-speci�cations) and (ii) the 1-dimensional �nite periodic

speci�cations of Gale and Wanke [Ga59, Wa93] (referred to as 1-FPN-speci�cations). Both of

these speci�cations have been used to model problems in areas such as CAD systems and VLSI

2

design [Le89, LW87a, Le90], transportation planning [Ga59], parallel programming [Wa93],

etc. We give formal de�nitions of these speci�cations in Sections 4 and 5.

Let � be a problem posed for instances speci�ed using standard speci�cations. For

example, if � is a satis�ability problem for CNF formulas, the standard speci�cation is sets

of clauses, with each clause being a set of literals. Similarly if � is a graph problem, the

adjacency matrix representation or the adjacency list representation of the edges in the graph

are standard speci�cations. For the rest of the paper, we use

1. l-� to denote the problem �, when instances are speci�ed using the hierarchical speci-

�cations of Lengauer [Le89] (see De�nition 4.1), and

2. 1-fpn-� to denote the problem �, when instances are speci�ed using the 1-dimensional

�nite periodic speci�cations of Wanke [Wa93] (see De�nition 5.1).

Thus for example, l-3sat denotes the problem 3sat when instances are speci�ed using L-

speci�cations and 1-fpn-3sat denotes the problem 3sat when instances are speci�ed using

1-FPN-speci�cations. For the rest of this paper, we use the term succinct speci�cations to

mean both L-speci�cations and 1-FPN-speci�cations.

2 Summary of results

In this paper, we discuss a natural syntactic restriction on the L-speci�cations and call the

resulting speci�cations level-restricted speci�cations. (For 1-FPN-speci�cations our notion

of level restricted speci�cations closely coincides with Orlin's notion of narrow speci�cations

[Or82a].) Most of the problems considered in this paper are PSPACE-hard even for level re-

stricted speci�cations (see [Or82a, LW92, MH+95a]). Consequently, we focus our attention on

devising polynomial time approximation algorithms for level restricted L- or 1-FPN-speci�ed

problems. Recall that an approximation algorithm for a minimization problem5 � provides

a performance guarantee of � if for every instance I of �, the solution value returned by

the approximation algorithm is within a factor � of the optimal value for I. A polynomial

time approximation scheme (PTAS) for problem � is a family of algorithms such that,

given an instance I of � and an � > 0, there is a polynomial time algorithm in the family

that returns a solution which is within a factor (1 + �) of the optimal value for I. The main

contributions of this paper include the following.

� We design polynomial time approximation algorithms (for arbitrary instances) and

approximation schemes (for planar instances) for a variety of natural PSPACE-hard

problems speci�ed using either level restricted L- or 1-FPN-speci�cations. These are

the �rst polynomial time approximation schemes in the literature for \hard" problems

speci�ed using either L- or 1-FPN-speci�cations.

5A similar de�nition can be given for maximization problems.

3

To obtain our results we devise a new technique called the partial expansion. The

technique has two desirable features. First, it works for a large class of problems and

second, it works well for both L-speci�ed and 1-FPN-speci�ed problems.

� For problems speci�ed using level-restricted L- or 1-FPN-speci�cations, we devise poly-

nomial time approximation algorithms with performance guarantees that are asymptot-

ically equal to the best possible performance guarantees for the corresponding problems

speci�ed using standard speci�cations.

� These results presented in this paper are a step towards �nding su�cient syntactic

restrictions on the L- or 1-FPN-speci�cations that allow us to specify a number of

realistic designs in a succinct manner while making them amenable for rapid processing.

Our results provide the �rst examples of natural PSPACE-complete problems whose op-

timization versions have polynomial time approximation schemes. Thus they a�rmatively

answer the question posed by Condon, Feigenbaum, Lund and Shor [CF+93] of whether

there exist natural classes of PSPACE-hard optimization problems that have polynomial time

approximation schemes.

2.1 Meaning of approximation algorithms for succinctly speci�ed problems

When objects are represented using L- or 1-FPN-speci�cations, there are several possible

ways of de�ning what it means to \design a polynomial time approximation algorithm".

Corresponding to each decision problem �, speci�ed using either L- or 1-FPN-speci�cations,

we consider four variants of the corresponding optimization problem. We illustrate this with

an example.

Example 1: Consider the minimum vertex cover problem, where the input is an L-

speci�cation of a graph G. We provide e�cient algorithms for the following versions of the

problem.

1. The construction problem: Output an L-speci�cation of the set of vertices in the

approximate vertex cover C.

2. The Size problem: Compute the size of the approximate vertex cover C for G.

3. The query problem: Given any vertex v of G and the path from the root to the node

in the hierarchy tree (see Section 2 for the de�nition of hierarchy tree) in which v occurs,

determine whether v belongs to the vertex cover C.

4. The output problem: Output the approximate vertex cover C.

Note that our algorithms for the four variants of the problem apply to the same vertex

cover C. Our algorithms for (1), (2) and (3) above run in time polynomial in the size of the

L-speci�cation rather than the size of the graph obtained by expanding the L-speci�cation.

4

Our algorithm for (4) runs in time linear in the size of the expanded graph but uses space

which is only polynomial in the size of the L-speci�cation.2

Analogous variants of approximation algorithms can be de�ned for 1-FPN-speci�ed prob-

lems. Therefore, we omit this discussion.

These variants are natural extensions of the de�nition of approximation algorithms for

problems speci�ed using standard speci�cations. This can be seen as follows: When instances

are speci�ed using standard speci�cations, the number of vertices is polynomial in the size of

the description. Given this, any polynomial time algorithm to determine if a vertex v of G is

in the approximate minimum vertex cover can be easily modi�ed to obtain a polynomial time

algorithm that lists all the vertices of G in the approximate minimum vertex cover. Thus

in the case when inputs are speci�ed using standard speci�cations, (3) can be used to solve

(2) and (4) in polynomial time. The above discussion also shows that given an optimization

problem speci�ed using standard speci�cations, variants (1), (3) and (4) discussed above are

polynomial time inter-reducible.

The approximation algorithms given in this paper have another desirable feature. For

an optimization problem or a query problem, our algorithms use space and time which is

a low level polynomial in the size of the hierarchical or the periodic speci�cation. This

implies that for graphs of size N , that are speci�ed using speci�cations of size O(polylog N),

the time and space required to solve problems is only O(polylog N). Moreover when we

need to output the subset of vertices, subset of edges, etc. corresponding to a vertex cover,

maximum cut, etc., in the expanded graph, our algorithms take essentially the same time

but substantially less (often logarithmically less) space than algorithms that work directly on

the expanded graph. The graphs obtained by expanding hierarchical or periodic descriptions

are frequently too large to �t into the main memory of a computer [Le86]. This is another

reason for designing algorithms which exploit the regular structure of the underlying graphs.

Indeed, most of the standard algorithms in the literature assume that the input completely

resides in the main memory. As a result, even the most e�cient algorithms incur a large

number of page faults while executing on the graphs obtained by expanding the hierarchical or

periodic speci�cations. Hence, algorithms designed for solving problems for graphs or circuits

represented in a standard fashion are often impractical for succinctly speci�ed graphs. We

refer the reader to [Le86, Le90] for more details on this topic.

The rest of the paper is organized as follows. Section 3 contains discussion of related

research. In Sections 4, 5 and 6 we give the basic de�nitions and preliminaries. In Section 7 we

discuss our approximation algorithms for L-speci�ed problems and 1-FPN-speci�ed problems.

Finally in Section 8, we give concluding remarks and directions for future research.

3 Related research

In the past, much work has been done on characterizing the complexity of various prob-

lems when instances are speci�ed using L- or 1-FPN-speci�cations. For periodically speci�ed

graphs, several researchers [CM91, CM93, HW92, KMW67, KO91, Or84a, Or84b] have given

5

e�cient algorithms for solving problems such as determining strongly connected com-

ponents, testing for existence of cycles, finding minimum cost paths between

a pair of vertices, bipartiteness, planarity and minimum cost spanning forests.

Orlin [Or84b] and Wanke [Wa93] discuss NP- and PSPACE-hardness results for in�nite and

�nite periodically speci�ed graphs.

For L-speci�ed graphs, Lengauer et al. [LW87a, Le88, Le89] and Williams et al. [Wi90]

have given e�cient algorithms to solve several graph theoretic problems including 2 color-

ing, minimum spanning forests and planarity testing. Lengauer and Wagner [LW92]

show that the following problems are PSPACE-hard when graphs are L-speci�ed: 3 color-

ing, Hamiltonian circuit and path, monotone circuit value problem, network

flow, alternating graph accessibility and maximum independent set. In [LW93],

Lengauer and Wanke consider a more general hierarchical speci�cation of graphs based on

graph grammars and gave e�cient algorithms for several basic graph theoretic problems spec-

i�ed using this speci�cation. We refer the reader to [HLW92, Ma94] for a detailed survey of

the work done in the area of hierarchical and periodic speci�cations.

A substantial amount of research has been done on �nding polynomial time approxi-

mation algorithms with provable worst case guarantees for NP-hard problems. In contrast,

until recently little work has been done towards investigating the existence of polynomial

time approximation algorithms for PSPACE-hard problems. As a step in this direction, in

[MH+93a, MR+93] we have investigated the existence and non-existence of polynomial time

approximations for several PSPACE-hard problems for L-speci�ed graphs. In [HM+94a], we

considered geometric intersection graphs de�ned using the hierarchical speci�cations (HIL)

of Bentley, Ottmann and Widmayer [BOW83]. There, we devised e�cient polynomial time

approximation schemes for a number of problems for geometric intersection graphs, speci�ed

using a restricted form of HIL.

Condon, et al. [CF+93, CF+94] also studied the approximability of several PSPACE-hard

optimization problems. They characterize PSPACE in terms of probabilistically checkable

debate systems and use this characterization to investigate the existence and non-existence of

polynomial time approximation algorithms for a number of basic PSPACE-hard optimization

problems.

4 The L-speci�cations

This section discusses the L-speci�cations. The following two de�nitions are essentially from

Lengauer [Le89, LW87a, LW92].

De�nition 4.1 An L-speci�cation � = (G1; :::; Gn) of a graph is a sequence of labeled undi-

rected simple graphs Gi called cells. The graph Gi has mi edges and ni vertices. pi of the

vertices are called pins. The other (ni � pi) vertices are called inner vertices. ri of the inner

vertices are called nonterminals. The (ni � ri) vertices are called terminals. The remaining

ni � pi � ri vertices of Gi that are neither pins nor nonterminals are called explicit vertices.

6

Each pin of Gi has a unique label, its name. The pins are assumed to be numbered from

1 to pi. Each nonterminal in Gi has two labels (v; t), a name and a type. The type t of a

nonterminal in Gi is a symbol from G1; :::; Gi�1. The neighbors of a nonterminal vertex must

be terminals. If a nonterminal vertex v is of the type Gj in Gi, then v has degree pj and each

terminal vertex that is a neighbor of v has a distinct label (v; l) such that 1 � l � pj. We say

that the neighbor of v labeled (v; l) matches the lth pin of Gj.

Note that a terminal vertex may be a neighbor of several nonterminal vertices. Given an

L-speci�cation �, N =
P

1�i�n ni denotes the vertex number, and M =
P

1�i�nmi denotes

the edge number of �. The size of �, denoted by size(�), is N +M .

De�nition 4.2 Let � = (G1; :::; Gn) be an L-speci�cation of a graph E(�) and let �i =

(G1; :::; Gi) . The expanded graph E(�) (i.e. the graph associated with �) is obtained as

follows:

k = 1 : E(�) = G1.

k > 1 : Repeat the following step for each nonterminal v of Gk, say of the type Gj: delete v

and the edges incident on v. Insert a copy of E(�j) by identifying the lth pin of E(�j) with

the node in Gk that is labeled (v; l). The inserted copy of E(�j) is called a subcell of Gk.

Observe that the expanded graph can have multiple edges although none of the Gi have

multiple edges. Here however, we only consider simple graphs, i.e. there is at most edge

between a pair of vertices. This means that multi edges are treated simply as single edges. We

assume that � is not redundant in the sense that for each i, 1 � i � n, there is a nonterminal

v of type Gi in the de�nition of Gj, j > i.

The expansion E(�) is the graph associated with the L-speci�cation � with vertex number

N . For 1 � i � n, �i = (G1; :::; Gi) is the L-speci�cation of the graph E(�i). Note that the

total number of nodes in E(�) can be 2
(N). (For example, a complete binary tree with

2
(N) nodes can be speci�ed using an L-speci�cation of size O(N).) To each L-speci�cation

� = (G1; :::; Gn), (n � 1), we associate a labeled rooted unoriented tree HT (�) depicting the

insertions of the copies of the graphs E(�j) (1 � j � n� 1), made during the construction of

E(�) as follows:

De�nition 4.3 Let � = (G1; :::; Gn), (n � 1) be an L-speci�cation of a graph. The hierar-

chy tree of �, denoted by HT (�), is the labeled rooted unordered tree de�ned as follows:

1. Let r be the root of HT (�). The label of r is Gn. The children of r in HT (�) are

in one-to-one correspondence with the nonterminal vertices of Gn as follows: The label

of the child s of r in HT (�) corresponding to the nonterminal vertex (v;Gj) of Gn is

(v;Gj).

2. For all other vertices s of HT (�) and letting the label of s = (v;Gj), the children of s in

HT (�) are in one-to-one correspondence with the nonterminal vertices of Gj as follows:

The label of the child t of s in HT (�) corresponding to the nonterminal vertex (w;Gl)

of Gj is (w;Gl).

7

Given the above de�nition, we can naturally associate a hierarchy tree corresponding to

each �i, 1 � i � n. We denote this tree by HT (�i). Note that, each vertex v of E(�) is either

an explicit vertex of Gn or is the copy of some explicit vertex v0 of Gj (1 � j � n) in exactly

one copy Cv
j of the graph E(�j) inserted during the construction of E(�). This enables us to

assign v of E(�) to the unique vertex nv of the HT (�) given by

1. if v is a terminal vertex of Gn, then nv is the root of HT (�), and

2. otherwise, v belongs to the node nv that is the root of the hierarchy tree HT (�j),

corresponding to Cv
j .

Given HT (�), the level number of a node in HT (�) is de�ned as the length of the path

from the node to the root of the tree.

As noted in [Le89], L-speci�cations have the property that for each copy (instance) of a

subcell, a complete boundary description has to be given. Thus if a nonterminal has a lot

of pins, copying it is costly. Another property of the de�nition of L-speci�cations is that

nonterminals are adjacent only to terminals. These properties ensure that the size of the

\frontier" (or the number of neighbors) of any nonterminal is polynomial in the size of the

speci�cation. These properties weaken the L-speci�cations with respect to other notions of

hierarchy involving a substitution mechanism that entails implicit connections to pins at a cell

boundary [Ga82, Wa84]. As a result, regular structures such as grids cannot be speci�ed using

small L-speci�cations. (see [LW87a]). In contrast the graph glueing model of Galperin [Ga82]

allows a hierarchical description of pins; thus the size of the frontier can be exponentially

large. As a result, graphs such as grids can be represented using descriptions of logarithmic

size. However as demonstrated in [Le89, LW87a, Le88, Ga82, Wa84], these properties seem

to be a prerequisite for the construction of e�cient algorithms for L-speci�ed problems. As

subsequent sections show, these restrictions are also necessary in part, for devising e�cient

approximation algorithms for L-speci�ed problems. The size of the frontier also has a signif-

icant impact on the complexity of several basic succinctly speci�ed problems. For example,

several basic NP-hard problems become PSPACE-hard when speci�ed using L-speci�cations

(see [LW92, MH+95a]). In contrast, in a recent paper we show that these problems typically

become NEXPTIME-hard when speci�ed using the graph glueing speci�cations of [Ga82] (see

[MH+95c]).

By noting De�nition 4.1, it follows that an L-speci�cation is a restricted form of context-

free graph grammar. The substitution mechanism glues the pins of cells to neighbors of

nonterminals representing these cells, as described in De�nition 4.2. Such graph grammars

are known as hyperedge replacement systems [HK87] or cellular graph grammars [LW93]. Two

additional restriction are imposed on cellular graph grammars to obtain L-speci�ed graphs.

First, for each nonterminal there is only one cell that can be substituted. Thus there are no

alternatives for substitution. Second, the index of the substituted cell has to be smaller than

the index of the cell in which the nonterminal occurs. The acyclicity condition together with

the no alternatives condition implies that an L-speci�cation de�nes a �nite and unique graph.

8

α

β

γ
1

2 3 4

5

1 G2G

G1 G1

G G1 2 e

a b c d

G3

G

G G

G G1 1

1 2

3

Hierarchy Tree

explicit vertices pins nonterminals

Figure 1: An L-speci�cation G of a graph E(G), and the associated hierarchy tree HT (G).
The mapping between the pins and its neighbors is clear by the relative positions of the pins
and its neighbors.

We observe that HT (�) is the parse tree of the unique graph generated by the context-free

graph grammar �.

Example 2: Figures 1 depicts the L-speci�cation G = (G1; G2; G3) and the associate hi-

erarchy tree HT (G). Figure 2 depicts the graph E(G) speci�ed by G. The correspondence

between pins of Gj and neighbors of Gj in Gi, j < i, is clear by the positions of the vertices

and the pins. 2

4.1 Level restricted speci�cations

Next, we discuss level restricted L-speci�cations. This is also discussed in [MR+93, MH+93a].

De�nition 4.4 An L-speci�cation � = (G1; :::; Gn) (n � 1), of a graph G is 1-level-restricted,

if for all edges (u; v)of E(�), either

(1) nu and nv are the same vertex of HT (�), or

(2) one of nu or nv is the parent of the other in HT (�).

Extending the above de�nition we can de�ne k-level-restricted speci�cations. An L-

speci�cation � = (G1; :::; Gn); (n � 1); of a graph E(�) is k-level-restricted, if for all edges

(u; v) of E(�), either

(1) nu and nv are the same vertex of HT (�) or

(2) one of nu or nv is an ancestor of the other in HT (�) and the length of the path between

nu and nv in HT (�) is no more than k.

We note that for any �xed k � 1, k-level-restricted L-speci�cations can still lead to graphs

that are exponentially large in the sizes of their speci�cations. Moreover, L-speci�cations (see

9

1 5

2 3 4

1 5

2 3 4

1 5

2 3 4
α β

γ

a b c

d

e

Figure 2: The graph E(G) represented by G speci�ed in Figure 1.

[Le82, Le86, LW87a]) for several practical designs are k-level restricted for small values of k.

(For example, it is easy to a complete binary tree with 2
(N) nodes by a 1-level restricted

L-speci�cation of size O(N). Note however, that the speci�cation depicted in Figure 1 is not

1-level-restricted.) For the rest of the paper, given a problem � speci�ed using standard speci-

�cations, we use 1-l-� to denote the problem speci�ed using 1-level restricted L-speci�cations

and k-l-� to denote the problem speci�ed using k-level restricted L-speci�cations.

5 1-FPN-speci�cations

Next, we give the de�nition of one dimensional periodic speci�cations due to Orlin [Or82a],

Wanke [Wa93] and H�ofting and Wanke [HW92]. For the rest of the paper N and Z denotes

the set of non-negative integers and integers respectively.

De�nition 5.1 Let G(V;E) (referred to as a static graph) be a �nite undirected graph such

that each edge (u; v) has an associated non-negative integral weight tu;v. The one way in�nite

graph G1(V 0; E0) is de�ned as follows:

1. V 0 = fv(p) j v 2 V and p 2 Ng

2. E0 = f(u(p); v(p + tu;v)) j (u; v) 2 E , tu;v is the weight associated with the edge (u; v)

and p 2 Ng

A 1-dimensional periodic speci�cation � (referred to as 1-PN-speci�cation) is given by � =

(G(V;E)) and speci�es the graph G1(V 0; E0) (referred to as 1-PN-speci�ed graph).

A 1-PN-speci�cation � is said to be narrow or 1-level restricted if 8(u; v) 2 E, tu;v 2 f0; 1g.

This implies that 8(u(p); v(q)) 2 E0, jp� qj � 1. Similarly, a 1-PN-speci�cation is k-narrow

or k-level restricted if 8(u; v) 2 E, tu;v 2 f0; 1; : : : kg.

10

G 4

u u u

x x x x

0 1 2 3

3210

u u

x

4

4

G

1

1

1

v

w

1

x

u

Figure 3: A static graph G, and the graph G4 speci�ed by the 1-FPN-speci�cation � = (G; 4).

We note that if we replace N by Z in De�nition 5.1, we obtain a two way in�nite peri-

odically speci�ed graph de�ned in Orlin [Or82a]. It is sometimes useful to imagine a narrow

periodically speci�ed graph G1 as being obtained by placing a copy of the vertex set V at

each integral point (also referred to as lattice point) on the X-axis (or the time line) and

joining vertices placed on neighboring lattice points in the manner speci�ed by the edges in

E.

Gm is the subgraph of the in�nite periodic graph G1 induced by the vertices associated

with nonnegative lattice points less than or equal to m. Formally,

De�nition 5.2 Let G(V;E) denote a static graph. Let G1(V 0; E0) denote the one way in-

�nite 1-PN-speci�ed graph as in De�nition 5.1. Let m � 0 be an integer speci�ed using

binary numerals. Let Gm(V m; Em) be a subgraph of G1(V 0; E0) induced by the vertices

V m = fv(p)jv 2 V and 0 � p � mg. A 1-dimensional �nite periodic speci�cation � (re-

ferred to as 1-FPN-speci�cation) is given by � = (G(V;E);m) and speci�es the graph Gm

(referred to as 1-FPN-speci�ed graph).

An example of a 1-FPN-speci�ed graph appears in Figure 3. In [Or82a], Orlin de�ned

the concept of two way in�nite 1-dimensional periodically speci�ed 3CNF formulas and the

associated 3sat problem [GJ79]. It is straightforward to restrict Orlin's de�nition along the

lines of De�nition 5.1 to de�ne 1-FPN-speci�ed satis�ability problems. As a consequence, we

omit the de�nition here. (See [Or82a, MH+95a, Pa94] for formal de�nitions of periodically

speci�ed satis�ability problems.) We only give an example of 1-FPN-speci�ed 3CNF formula

to illustrate the concept.

Example 3: Let U = fx1; x2; x3g be a set of static variables. Let C be a set of static clauses

given by (x1(0) + x2(0) + x3(0)) ^ (x1(1) + x3(0)) ^ (x3(1) + x2(0)). Let F = (U;C; 3) be a

1-FPN-speci�cation. Then F speci�es the 3CNF formula F 3(U3; C3) given by

(x1(0) + x2(0) + x3(0)) ^ (x1(1) + x3(0)) ^ (x3(1) + x2(0))
^

(x1(1) + x2(1) + x3(1)) ^ (x1(2) + x3(1)) ^ (x3(2) + x2(1))
^

(x1(2) + x2(2) + x3(2)) ^ (x1(3) + x3(2)) ^ (x3(3) + x2(2))
^

(x1(3) + x2(3) + x3(3))

11

6 Other preliminaries

Recall that a graph is said to be planar if it can be laid out in the plane in such a way

that there are no crossovers of edges. For the rest of the paper, we use l-pl-�, 1-l-pl-�

and 1-fpn-pl-� to denote the problem � restricted to L-speci�ed planar instances, 1-level-

restricted L-speci�ed planar instances and 1-FPN-speci�ed planar instances respectively. As

shown in Lengauer [Le89], given an L-speci�cation �, there is a polynomial time algorithm to

determine if E(�) is planar. Similarly as pointed out in [HLW92], given a 1-FPN-speci�cation

�, there is a polynomial time algorithm to determine if E(�) is planar. Thus for solving L-

or 1-FPN-speci�ed problems restricted to planar instances, we can assume without loss of

generality that the inputs to our algorithms consist of planar instances.

Next, we de�ne the problems max sat(S). The de�nition is essentially an extension of

the de�nition of sat(S) given in Schaefer [Sc78].

De�nition 6.1 (Schaefer [Sc78])

Let S = fR1; R2; � � � ; Rmg be a �nite set of �nite arity Boolean relations. (A Boolean relation

is de�ned to be any subset of f0; 1gp for some integer p � 1. The integer p is called the arity of

the relation.) An S-formula is a conjunction of clauses each of the form R̂i(�1; �2; � � �), where

�1; �2; � � � are distinct, unnegated variables whose number matches the arity of Ri; i 2 f1; � � �mg

and R̂i is the relation symbol representing the relation Ri. The S-satis�ability problem is the

problem of deciding whether a given S-formula is satis�able.

Given a S-formula F , the problem max sat(S) is to determine the maximum number simul-

taneously satis�able clauses in F .

As in Schaefer [Sc78], given S, Rep(S) is the set of relations that are representable by

existentially quanti�ed S-formulas with constants.

Recall from [Li82] that a S-formula f is said to be planar if its associated bipartite graph

is planar. The problem pl-3sat [Li82] is the problem of determining if a given planar 3CNF

formula is satis�able. Lichtenstein [Li82] showed that the problem pl-3sat is NP-complete.

Next, we de�ne L-speci�ed S-formulas. Such formulas are built by de�ning larger S-

formulas in terms of smaller S-formulas. Just as L-speci�cations of graphs can represent

graphs that are exponentially larger than the speci�cation, L-speci�ed S-formulas can specify

formulas that are exponentially larger than the size of the speci�cation.

De�nition 6.2 An instance F = (F1(X
1); : : : ; Fn�1(X

n�1); Fn(X
n)) of l-sat(S) is of the

form

Fi(X
i) = (

^
1�j�li

Fij (X
i
j ; Z

i
j))
^

fi(X
i; Zi)

for 1 � i � n where fi are S-formulae, Xn = �, Xi;Xi
j ; Z

i; Zi
j ; 1 � i � n� 1, are vectors of

Boolean variables such that Xi
j � Xi, Zi

j � Zi , 0 � ij < i. Thus, F1 is just a S-formula.

An instance of l-sat(S) speci�es a S-formula E(F), that is obtained by expanding the Fj,

2 � j � n, where the set of variables Z's introduced in any expansion are considered distinct.

12

The problem l-sat(S) is to decide whether the formula E(F) speci�ed by F is satis�able.

The corresponding optimization problems denoted by l-max-sat(S) is to �nd the maximum

number of simultaneously satis�able clauses in E(F).

Let ni be the total number of variables used in Fi (i.e. jX
ij+ jZij) and let mi be the total

number of clauses in Fi. The size of F , denoted by size(F), is equal to
P

1�i�n(mini). Given

a formula E(F) speci�ed by an L-speci�cation F , BG(E(F)) denotes the bipartite graph

associated with E(F). We use H[BG(E(F))] to denote the L-speci�cation of BG(E(F)). It

is easy to de�ne level-restricted l-sat(S) formulas along the lines of De�nition 4.4. Hence we

omit this de�nition here.

Example 4: Let F = (F1(x1; x2); F2(x3; x4); F3) be an instance of l-3sat where each Fi is

de�ned as follows:

F1(x1; x2) = (x1 + x2 + z1) ^ (z2 + z3)

F2(x3; x4) = F1(x3; z4) ^ F1(z4; z5) ^ (z4 + z5 + x4)

F3 = F1(z7; z6) ^ F2(z8; z7)

The formula E(F) denoted by F is (z7 + z6 + z11) ^ (z12 + z13) ^ (z8 + z4 + z21) ^ (z22 + z23)^

(z4 + z5 + z31) ^ (z32 + z33) ^ (z4 + z5 + z7).

We now extend the de�nition of pl-3sat given in [Li82] to de�ne the l-pl-3sat.

De�nition 6.3 The problem l-pl-3sat is to decide whether the planar 3CNF formula E(F)

speci�ed by an L-speci�cation F is satis�able. The corresponding optimization problems de-

noted by l-pl-max-3sat is to �nd the maximum number of simultaneously satis�able clauses

in E(F).

Extensions of the above de�nition to 1-l-pl-3sat, 1-l-pl-max-3sat, l-pl-sat(S), l-

pl-max-sat(S), 1-l-pl-sat(S) and 1-l-pl-max-sat(S) is straightforward and is omitted.

Finally we state the following PSPACE-completeness results proved in a sequel paper

[MH+95a]. The de�nitions of the problems mentioned below can be found in [GJ79].

Theorem 6.4 The following problems are PSPACE-complete for 1-level-restricted L-speci�ed

planar instances: independent set, dominating set, vertex cover, partition into

triangles and sat(S) such that Rep(S) is the set of all �nite arity Boolean relations.

Theorem 6.5 The following problems are PSPACE-complete for 1-FPN-speci�ed planar in-

stances: independent set, dominating set, vertex cover, partition into triangles

and sat(S) such that Rep(S) is the set of all �nite arity Boolean relations.

13

7 Approximation algorithms

The hardness results in Theorems 6.4 and 6.5 motivate the study of polynomial time ap-

proximation algorithms with good performance guarantees for these problems. We show that

several basic combinatorial problems (including the ones in Theorems 6.4 and 6.5) have ap-

proximation algorithms with performance guarantees asymptotically equal to the best known

performance guarantees, when instances are speci�ed using standard speci�cations. As an

immediate corollary, most of the problems shown to have polynomial time approximation

schemes (PTASs) in [Ba83, HM+94c] when instances are represented using standard speci�-

cations, have PTASs when instances are speci�ed either by k-level-restricted L-speci�cations

or 1-FPN-speci�cations.

7.1 The basic technique: Partial expansion

We outline the basic technique behind the approximation algorithms for the 1-level-restricted

L-speci�ed problems. Consider one of the maximization problems � in this paper. Let A be

an approximation algorithm with performance guarantee FBEST , for � when speci�ed using

standard speci�cations. Also, let T (N) denote an increasing function that is an upper bound

on the running time of A used to solve � speci�ed using standard speci�cations of size O(N).

Then, given a �xed l � 1, our approximation algorithm for 1-l-� takes time O(N � T (N l+1))

and has a performance guarantee of (l+1
l
) � FBEST . Informally, the algorithm consists of

(l + 1) iterations. During an iteration i we delete6 all the explicit vertices which belong to

nonterminals de�ned at level j, j = i mod (l+1). Intuitively, our algorithm works as follows:

break up the given hierarchy tree into a collection of disjoint trees, �nd a near optimal solution

for the vertex induced subgraph7 de�ned by each small tree and output the union of all these

solutions as the solution for the problem �. It is important to observe that the hierarchy

tree can have an exponential number of nodes. Hence the deletion of nonterminals and the

determination of near optimal solutions for each subtree has to be done in such a manner so

that the whole process takes only polynomial time. This is achieved by observing that the

subtrees can be divided into n distinct equivalence classes and that the number of subtrees

in each equivalence class can be counted in polynomial time in the size of the speci�cation.

We remark that our idea of dividing the graph into vertex (edge) disjoint subgraphs is

similar to the technique used by Baker [Ba83] for obtaining approximation schemes for planar

graph problems.

6For minimization problem instead of deleting the vertices in the level, we consider the vertices as a part

of both the subtrees.
7For a �xed l, the size of each subgraph is polynomial in the size of the speci�cation.

14

7.2 maximum independent set problem for 1-level-restricted L-speci�ed

planar graphs

We illustrate the technique by giving a polynomial time approximation scheme for the max-

imum independent set problem for 1-L-speci�ed planar graphs. The independent set

problem is de�ned as follows. Given a graph G = (V;E) and a positive integer K � jV j, is

there an independent of size K or more for G, i.e., a subset V 0 � V with jV 0j � K such that

for each u; v 2 V 0 (u; v) 62 E. The optimization problem called the maximum independent

set problem (mis) requires one to �nd an independent set of maximum size. In [MH+93a],

we showed that given an L-speci�cation that has edges between pins in the same nontermi-

nal, there is a polynomial time algorithm to construct a new L-speci�cation such that there

is no edge between pins in the same nonterminal. Consequently, we assume without loss of

generality that in the given L-speci�cation there is no edge between two pins in the same

nonterminal.

In the following description, we use HIS(Gi) to denote the approximate independent

set for the graph E(�i) obtained by our algorithm H-MIS. We also use F-MIS to denote

the algorithm of Baker [Ba83] for �nding an approximate independent set in a planar graph

speci�ed using a standard speci�cation. Before we discuss the details of the heuristic we de�ne

the concept of partial expansion of an L-speci�cation. Recall that, for each nonterminal Gi

there is a unique hierarchy tree HT (Gi) rooted at Gi.

De�nition 7.1 Let � = (G1; :::; Gn) be an L-speci�cation of a graph E(�). The partial ex-

pansion PE(Gj
i), of the nonterminal Gi is constructed as follows:

j = 0: PE(Gj
i) = Gi� fall the explicit vertices de�ned in Gig (Thus the de�nition of PE(Gj

i)

now consists of a collection of the nonterminals and pins called in the de�nition of Gi).

j � 1 : Repeat the following step for each nonterminal Gr called by Gi: Insert a copy of

PE(Gj�1
r) by identifying the lth pin of PE(Gj�1

r) with the node in Gi that is labeled (v; l).

(Observe that the de�nition of PE(Gj
i) consists of (i) explicit vertices de�ned in all the non-

terminals at depth r, 0 � r � j � 1 in HT (Gi) and (ii) a multiset of nonterminals Gk, such

that the nonterminal Gk occurs at depth j + 1 in the hierarchy tree HT (Gi).)

Let Ex(PE(Gj
i)) denote the subgraph induced by the set of explicit vertices in the de�-

nition of PE(Gj
i). Also let V (E(�i)) denote the set of vertices in E(�i).

Heuristic H-MIS

� Input: A 1-level-restricted L-speci�cation � = (G1; :::; Gn) of a planar graph G and an
integer l � 1.

� Output: An L-speci�cation of an independent set for E(�) whose size is at least (l
l+1)

2

times the size of an optimal independent set in E(�).

15

�1. For each 1 � i � l, �nd a near optimal independent set in E(�i) using F-MIS.

2. For each l + 1 � i � n� 1

(a) Compute the partial expansion PE(Gl
i) of Gi.

(b) Find an independent set in the subgraph Ex(PE(Gl
i)) using heuristic F-MIS. De-

note this by Al
i.

(c) Let Gi1 ; � � �Gip denote the multiset of nonterminals in PE(Gl
i). Then the inde-

pendent set for the whole graph for the iteration i denoted by HIS(Gi) is given
by

HIS(Gi) = Al
i [

[
1�r�p

HIS(Gir):

Remark: The explicit vertices in PE(Gl
i) do not have an edge to any of the non-

terminals Gi1 ; � � �Gip . From this observation and the de�nition of hierarchical spec-
i�cation the independent set HIS(Gi) can now be calculated as follows.

(d)

jHIS(Gi)j = jAl
ij+

X
1�r�p

jHIS(Gir)j

3. For each 0 � i � l

(a) Compute a partial expansion PE(Gi
n) of Gn.

(b) Find a near optimal independent set of all the explicit vertices in PE(Gi
n) using

F-MIS. Denote this by Ai
n.

(c) Let Gn1 ; � � �Gnp denote the multiset of nonterminals in PE(Gi
n). The independent

set for the whole graph for the iteration i, denoted by HISi(Gn), is given by

HISi(Gn) = Ai
n [

[
1�r�p

HIS(Gnr):

Remark: By a remark similar to one in Step 2(c) of the algorithm, we have the
following.

(d)

jHISi(Gn)j = jAi
nj+

X
1�r�p

jHIS(Gnr)j:

4. The independent set HIS(G) is the largest among all the independent sets HISi(Gn)
computed in Step 3(c).

5. jHIS(G)j = max
0�i�l

jHISi(Gn)j

7.3 Analysis and Performance Guarantee

The correctness ofH-MIS and the proof of its performance guarantee is based on the following

intermediate results.

Lemma 7.2 The set HIS(G) computed by the algorithm H-MIS in Step 4 is an independent

set.

16

Proof: We �rst prove that the set for 1 � i � n� 1, HIS(Gi), is an independent set. The

proof is by induction on the depth of the hierarchy tree HT (�).

Basis: If the depth is � l, the proof follows by the correctness of algorithm F-MIS.

Induction: Assume that the lemma holds for all hierarchy trees of depth at most m > l.

Consider a hierarchy tree of depth m + 1. Step 2(c) of the algorithm, computes a partial

expansion PE(Gl
i). This implies that the explicit vertices in PE(Gl

i) do not have edges

incident on the nonterminals in PE(Gl
i). Thus, by the de�nition of 1-level-restricted L-

speci�cations and partial expansion, it follows that the independent sets Al
i, and the sets

HIS(Gir), 1 � r � p computed in Steps 2(b) and 2(c) are disjoint. Also, the nonterminals

in PE(Gl
i) are at level l+1 in HT (Gi), and have an associated hierarchy tree of depth � m.

Thus by induction hypothesis and the above stated observations, it follows that HIS(Gm)

computed in Step 2(c) is an independent set. This completes the proof that 1 � i � n � 1,

HIS(Gi) is an independent set.

A similar inductive argument proves that the set HISi(Gn) computed in each iteration of

Step 3(c) is also an independent set. By Step 4, we have that HIS(G) is an independent set.

2

Lemma 7.3 1. In each iteration i, l + 1 � i � n� 1, of Step 2 of algorithm H-MIS, all

the explicit vertices in nonterminals at levels j = l mod (l + 1) in the hierarchy tree

HT (Gi) are deleted.

2. In each iteration i of Step 3 of algorithm H-MIS, all the explicit vertices in nonterminals

at levels j = i mod (l + 1) in the hierarchy tree HT (Gn) are deleted.

Proof of Part 1.: Induction on the depth of the hierarchy tree associated with Gi.

Basis: If the depth is l + 1, the proof follows directly by Step 1 and the de�nition of partial

expansion.

Induction: Assume that the lemma holds for all hierarchy trees of depth at most m > (l+1).

Consider a hierarchy tree of depth m + 1. Step 2(c) of the algorithm, computes the partial

expansion PE(Gl
i). This implies that all the explicit vertices at level l in the hierarchy tree

HT (Gi) were deleted. Each nonterminal occurring in the de�nition of PE(Gl
i) is at level l+1

in HT (Gi), and has an associated hierarchy tree of depth � m. The proof now follows by

induction hypothesis.

Proof of Part 2: Consider a hierarchy tree HT (Gn). In iteration i of Step 3 we compute

PEi
n. This removes all the explicit vertices de�ned in nonterminals at level i. Also, by

the de�nition of partial expansion it follows that all explicit vertices de�ned in nonterminals

at levels 1 to i appear explicitly in the partially expanded graph. Therefore, the partially

expanded graph now has nonterminals de�ned at level i + 1 in the hierarchy tree HT (Gn).

The theorem now follows as a consequence of Part 1 of the theorem. 2

Given the decomposition of E(�) into a forest (as a result of removing explicit vertices,

in nonterminals at levels j = i mod (l + 1) in the hierarchy tree HT (Gn)) we can associate

a hierarchy tree with each of the subgraphs in the forest. Each such tree is a subtree of the

17

original hierarchy tree HT (�). Label each subtree by the type of nonterminal that is the root

of the subtree. The proof of the following lemma is straightforward.

Lemma 7.4 1. During each iteration i of Step 3 of the algorithm H-MIS, the root of

each subtree is labeled by one of the elements of the set f1; � � � ; Gn�1g.

2. For 1 � i � n, let Hi
1; : : : ;H

i
ri
be the set of graphs corresponding to the subtrees labeled

Gi. Then for each i the graphs Hi
1; : : : ;H

i
ri
are isomorphic.

7.3.1 At Least One Good Iteration Exists

Next we prove that, at least one iteration of Step 3 has the property that the number of nodes

that are not considered in the independent set computation is a small fraction of the optimal

independent set.

Let Fi denote the set of vertices obtained by deleting the explicit nodes in iteration i in Step

3 of algorithm H-MIS. By Lemma 7.3 it follows that for each iteration i we did not consider

the explicit vertices in levels ji1 ; ji2 � � � jip such that 1 � ip � n and jiq = i mod (l + 1),

1 � q � p. Let Si 0 � i � l be the set of vertices not considered in iteration i of Step 3.

Let IS(Gn) denote an optimum independent set in the graph E(�). Let ISopt(Si) denote the

nodes in Si included in the maximum independent set IS(Gn).

Lemma 7.5

max
0�i�l

jIS(Fi)j �
l

(l + 1)
jIS(Gn)j

Proof: By Lemma 7.3 and the algorithm H-MIS, it follows that

Si \ Sj = �; [t=l
t=0St = V (E(�)); and

jISopt(S0)j+ jISopt(S1)j+ � � �+ jISopt(Sl)j = jIS(Gn)j:

Therefore,

min
0�i�l

jISopt(St)j � jIS(Gn)j=(l + 1)

max
0�i�l

jIS(Fi)j � jIS(Gn)j � min
0�i�l

jISopt(Si)j �
l

(l + 1)
jIS(Gn)j:

2

18

7.3.2 Performance Guarantee and running time

We now prove that the above algorithm computes a near optimal independent set. Given any

� > 0, for some choice of positive integer l such that (l
l+1)

2 � (1� �), we show that algorithm

H-MIS computes an independent set whose size is at least (1��) times the size of an optimal

independent set. We �rst recall a similar lemma in [Ba83] for planar graphs speci�ed using

standard speci�cations.

Theorem 7.6 [Ba83] For all �xed l � 1, given a planar graph G there is linear time algorithm

that computes an independent set FIS(G) such that jFIS(G)j � (l
l+1) � jIS(G)j, where IS(G)

denotes a maximum independent set in G.

Lemma 7.7 jHISi(Gn)j � (l
l+1) � jIS(Fi)j.

Proof: Induction on the number of nonterminals in the de�nition of �. The base case is

fairly straightforward. Consider the induction step. By the de�nition of partial expansion it

follows that,

jIS(Fi)j = jIS(Ex(PE(Gi
n))j+

X
1�r�p

jIS(PE(Gnr))j:

From Step 3(c) of the algorithm H-MIS we also know that

jHISi(Gn)j = jAi
nj+

X
1�r�p

jHIS(Gnr)j:

From the induction hypothesis and Theorem 7.6 it follows that

jAi
nj � (l

l+1) � jIS(Ex(PE(G
i
n))j and

jHIS(Gnr)j � (l
l+1) � jIS(PE(Gnr))j:

The lemma now follows.2

Theorem 7.8 jHIS(G)j � (l
l+1)

2 � jIS(G)j.

Proof: Follows from Lemma 7.5 and repeated application of Lemma 7.7.2

Theorem 7.9 Let � be an L-speci�cation with vertex number N . Given any � > 0, let l � 1

be an integer such that (l
l+1)

2 � (1 � �). Then the approximation algorithm H-MIS runs in

time O(N l+2) and �nds an independent set in E(�) that is at least (l
l+1)

2 times the size of

an optimal independent set in E(�).

Proof: The performance guarantee follows by Theorem 7.8. Therefore we only prove the

claimed time bounds.

First consider Step 1. Note that by Euler's formula, the number of edges in a planar graph

with O(N l) vertices is also O(N l). Thus, the size of the graphs E(�i), 1 � i � l is O(N l).

Hence the time required to compute the partial expansion is O(N l). By Theorem 7.6, the

19

time needed to compute an independent set in E(�i) is O(N
l). Thus the total running time

of Step 1 is O(N l).

Next consider each iteration of Step 2 of the algorithm H-MIS. Step 2(a) takes time

O(N l+1) since the size of the graph PE(Gl
i) can be O(N l+1). By Theorem 7.6, the time

needed for executing Step 2(b) is O(N l), since the number of nodes in Ex(PE(Gl
i)) can be

O(N l). By Lemma 7.4, Step 2(c) and 2(d) together take time O(N). Thus the total running

time for executing one iteration of Step 2 is O(N l+1). Thus the total running time of Step 2

is nO(N l+1) = O(N l+2).

A similar calculation shows that the total time needed to execute one iteration of Step 3

is O(N l+1). Thus the total time needed to execute Step 3 is (l + 1)O(N l+1) = O(N l+1).

Thus the total running time of the algorithm is O(N l+2). 2

7.4 L-Speci�cation of the solution and the query problem

In Section 7.3, we showed how to solve the size problem for 1-l-mis. We now discuss the

contsruction problem. As noted in Section 2.1 our algorithms for the four variants of the

problem apply to the same independent set HIS(G).

The L-speci�cation of the solution can be easily constructed by slightly modifying the

algorithm H-MIS as follows. Consider the iteration i of Step 3 which gives the maximum

independent set. Denote the iteration by i�. The L-speci�cation H of the solution consists of

nonterminals H1; � � � ;Hn. For 1 � j � n the explicit vertices of Hj are the explicit vertices in

PE(Gi
j) that are in the independent set. If PE(Gl

j) calls nonterminals Gj1 ; � � � ; Gjm then the

nonterminal Hj calls the nonterminals Hj1 ; � � � ;Hjm . Observe that some of the nonterminals

Hi may be redundant and these can removed from the �nal speci�cation. Given the L-

speci�cation of the solution, the query problem be easily solved by examining if the given

vertex occurs in the set of nodes speci�ed by the L-speci�cation of the solution. Given an

L-speci�cation of the solution, we can solve the output problem as folows: We traverse

the hierarchy tree associated with H in a depth �rst manner and output the vertices in the

nonterminals visited during the traversal.

Observe that the only place we used planarity was to obtain a near optimal solution for the

maximum independent set problem for each partially expanded graph. In Section 7.7 we use

this observation to compute near optimal solutions for problems for arbitrary 1-level-restricted

L-speci�ed graphs.

7.5 Other L-speci�ed planar problems

Our technique can be applied to obtain e�cient approximation algorithms for the following

additional optimization problems: minimum vertex cover, minimum dominating set,

maximum partition into triangles, minimum edge dominating set, maximum cut

and max sat(S) for any �nite set of �nite set of �nite arity Boolean relations S. The basic

idea behind devising approximation schemes for these problems is similar to the ideas used

20

to solve the maximum independent set problem. Therefore, we only brie
y discuss the

method for minimum vertex cover and max sat(S).

(1) minimum vertex cover:

Given a graph G = (V;E) and a positive integer K � jV j, is there a vertex cover of size K or

less for G, i.e., a subset V 0 � V with jV 0j � K such that for each edge (u; v) 2 E either u or

v belongs to V 0. The optimization problem requires one to �nd a vertex cover of minimum

size.

In order to approximate the 1-l-pl-minimum vertex cover problem we do the following.

Given an �, we choose an l such that (l+1
l
)2 � (1+�). Next, we modify the de�nition of partial

expansion so that instead of deleting the explicit vertices at levels (l + 1) apart, we consider

them in both sides of the partition. For each 0 � i < l, the algorithm �nds a near optimal

solution for the overlapping planar graphs induced by explicit vertices in levels (jl + i) to

((j+1)l+ i), for j � 0. The algorithm picks the best among all the vertex covers obtained for

the di�erent values of i. Let OPT (G) denote an optimal vertex cover for G. The following

lemma points out that the solution obtained is at most (l+1
l
)2 times the optimal vertex

cover. The proof of the lemma follows the same general argument given for the maximum

independent set problem.

Lemma 7.10 The size of the vertex cover obtained is no more than (l+1
l
)2jOPT (G)j

Proof: Consider an optimal solution OPT (G) to the vertex cover problem. Then for some

0 � t < l, at most jOPT (G)j=l nodes in OPT (G) are in levels congruent to t mod (l).

Consider the iteration when the planar graphs are obtained by overlapping at levels congruent

to t mod (l). Hence the size of an optimal vertex cover in this iteration is (jOPT (G)j +

jOPT (G)j=l). Now applying the known approximation scheme [Ba83] for computing a near

optimal vertex cover for each smaller subgraphs, we obtain a near optimal vertex cover for

the whole graph for iteration t. The size of the vertex cover obtained in this iteration is no

more than (jOPT (G)j + jOPT (G)j=l) l+1
l
. The reason for this is that the explicit vertices in

the overlapping levels are counted twice and the near optimal vertex cover heuristic for the

each of the small graphs yield a vertex cover of size (l+1)=l times the optimal vertex cover for

each small graph. Since the heuristic picks the minimum vertex over all values of i, it follows

that the size of the vertex cover produced by the heuristic is no more than (l+1
l
)2jOPT (G)j.2

(2) max sat(S):

In the following, we will assume that an instance F of 1-l-pl-max-sat(S) is speci�ed by

H[BG(E(F))] (i.e the speci�cation of the associated bipartite graph.). The basic idea behind

the approximation schemes for 1-l-max-pl-sat(S) is as follows: For each i, 0 � i � 2l in

increments of 2, we remove the explicitly de�ned clauses which are in levels j and j +1, such

that j = i mod (l + 1). This breaks the bipartite graph into a number of smaller bipartite

graphs such that the formulas they denote do not share any variables or clauses. It is not

21

Level j

Level (j+1)

Clauses removed

Variables in level j included in this
subgraph

Variables in level (j+1)
included in this subgraph

Figure 4: Basic Idea behind the approximation algorithm for 1-l-max-pl-sat(S). The black
dots represent variables and the ellipses denote clauses. The �gure depicts which set of clause
to remove and the redistribution of the variables.

di�cult to modify the de�nition of partial expansion to obtain a decomposition as described

above. Figure 4 shows how the variables in levels j and j + 1 are redistributed. As in the

case of maximum independent set problem, it is easy to see that there exists an iteration

t, 0 � t � 2l, such that at most OPT
(l+1) clauses in OPT are deleted. Next, by the results in

[HM+94c] the problem can be solved near optimally for each smaller subformulas. The union

of the clauses satis�ed for each small formula constitutes a solution for a given value of i. We

pick the best solution for di�erent values of i. This ensures that the best assignment to the

variables over all values of i is at least (l
l+1)

2 of an optimal assignment to the variables of the

1-l-pl-max-sat(S) instance.

7.6 Extension to k-level restricted instances

The above results can be generalized for problems speci�ed using k-level-restricted L-speci�cations.

We only point out the essential di�erences. Again, for the purposes of illustration consider

the problem k-l-pl-mis. First note that we need to extend the de�nition of partial expansion

so that we delete the explicit vertices in nonterminals at k consecutive levels. This implies

that the time to compute PE(Gl
i), 1 � i � n�1 is O(N l+k). The rest of the algorithm follows

the same outline as that of H-MIS. The proof of correctness and the performance guarantee

also follow similar arguments as in Section 7.3. Thus the total running time of the algorithm

is O(Nk+l+1) and its performance guarantee is (l+1
l
)2. Hence we have the following theorem.

Theorem 7.11 For any �xed k � 1, there are polynomial time approximation schemes for

the problems maximum independent set, minimum dominating set, minimum vertex

22

cover, minimum edge dominating set, maximum partition into triangles and max-

imum cut, and max sat(S), for each �nite set of �nite arity Boolean relations S, when

restricted to planar instances speci�ed using k-level-restricted L-speci�cations.

7.7 Extension to arbitrary graphs

Our results in Sections 7.2 through 7.6 can be extended for problems on arbitrary graphs

speci�ed using k-level-restricted L-speci�cations. To do this, observe that to obtain the results

in Sections 7.2 through 7.6 we used planarity only to obtain approximation schemes for smaller

subgraphs (formulas) obtained as a result of partial expansion. If the graphs were not planar

we could use the best known approximation algorithms for solving the problem near optimally

and in turn get a performance guarantee which re
ects this bound. For example, consider

the problem 1-l-max-2sat. Let � > 0 be the required performance guarantee. l � 1 is an

integer satisfying the inequality l
l+1 � (1� �). For the problem max-2sat, the recent work

of Goemans and Williamson [GW94] provides an approximation algorithm with performance

guarantee of 1.137. Using their algorithm as a subroutine to solve the small max-2sat

instances obtained as a result of partial expansion, we can devise an approximation algorithm

for 1-l-max-2sat with performance guarantee
�
l+1
l

�
1:137. A similar idea applies to other

optimization problems considered considered. Again, it is easy to generalize our results for

k-level restricted L-speci�cations. Thus we have the following theorem.

Let � be one of the problems: maximum independent set, minimum dominating

set, minimum vertex cover, minimum edge dominating set, maximum partition

into triangles, maximum cut and max-sat(S), for �nite set of Boolean relations S, such

that Rep(S) is the set of all �nite arity Boolean relations 8.

Theorem 7.12 For all �xed k � 1, � > 0 and for all of the problems �, there are polynomial

time approximation algorithms with performance guarantee9 (1 + �) � FBEST� for problems

�, when speci�ed using k-level restricted L-speci�cations. Here FBEST� denotes the best

known performance guarantee of an algorithm for the problem � for instances speci�ed using

standard speci�cations.

Using the results of Arora et al.[AL+92], Bellare et. al. [BG+95] and our results in

[HMS94] we get the following theorem.

Theorem 7.13 Unless P = NP, the problems �, when speci�ed using k-level restricted

L-speci�cations, do not have polynomial time approximation schemes.

7.8 Approximation algorithms for 1-FPN-speci�ed problems

Next, we brie
y discuss how to extend our ideas developed in Sections 7.2 through 7.7 in

order to devise approximation schemes for several PSPACE-hard problems for 1-FPN-speci�ed

instances.
8Actually our easiness results hold for all �nite set of �nite arity Boolean relations S.
9For the sake of uniformity we assume that the performance guarantee is � 1.

23

V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9)

H(l H(l H(lr) r)3
0 r)3 3 3 3 3

0 1 1 2 2

Figure 5: A schematic diagram showing the vertices to be removed in each iteration i while
computing a near optimal independent set for 1-FPN-speci�ed planar graphs. In our example
i = 3, l + 1 = 4, and m = 9. Each box represents a copy of the vertices in the original static
graph. The shaded area represents the vertices that are removed.

The basic idea is simple. Once again we illustrate our ideas by describing our approxima-

tion algorithm for the problem 1-fpn-pl-mis. Given a 1-FPN-speci�cation � = (G(V;E);m)

of a planar graph Gm and an � > 0, we �nd the corresponding integer l that satis�es the

inequality (l
l+1)

2 � (1� �). For 0 � i � l, we remove the vertices placed at the lattice points

j such that j = i mod(l+ 1). This partitions the graph Gm into a number of smaller disjoint

subgraphs, each induced by l consecutive lattice points.

Speci�cally, for a given i, let lip = maxf0; (p � 1)(l + 1) + (i+ 1)g and rip = minfm; p(l +

1) + (i � 1)g, where 0 � p � ti. Here ti = dm�(i�1)(l+1) e. Let the subgraph induced by vertices

v(jp), where l
i
p � jp � rip, be denoted by H(lip; r

i
p). For a given � > 0, the graphs H(lip; r

i
p) are

linear in the size of �. Figure 5 shows a schematic diagram of the vertices removed in a given

iteration i. Next, we solve the mis problem near optimally on each of the subgraphs. This

can be done by using the linear time algorithm stated in Theorem 7.6. The union of these

independent sets is the independent set obtained in iteration i. The heuristic simply picks

up the largest independent set obtained over all l+1 iterations. By arguments similar to the

ones we presented for approximating 1-l-pl-mis (Subsections 7.2 to 7.4), it follows that the

approximation algorithm has a performance guarantee of (l+1
l
)2.

We note the following important point. If a near optimal independent set were to be

obtained for each subgraph H(lip; r
i
p), we would take an exponential amount of time in each

iteration i. This is because p = O(m). Hence we can not a�ord to solve the problem

explicitly for each subgraph. But observe that each iteration i the subgraphs H(lip; r
i
p),

1 � p � dm�(i�1)(l+1) e � 1 are isomorphic. Hence we need to solve the mis problem for the

graphs H(li0; r
i
0);H(li1; r

i
1) and H(liti ; r

i
ti
), where ti = dm�(i�1)(l+1) e. Let IS(H(lip; r

i
p)) denote the

independent set obtained by the heuristic for the graph H(lip; r
i
p)). Furthermore, let the ap-

proximate maximum independent set for the whole graph for a given iteration i be denoted

by IS(Gm(i)). Then IS(Gm(i)) is given by the following equation:

jIS(Gm(i))j = jIS(H(li0; r
i
0))j+ b

m� (i� 1)

(l + 1)
cjIS(H(li1; r

i
1))j+ jIS(H(liti ; r

i
ti
))j

This completes the discussion of the approximation algorithm for 1-fpn-pl-mis. By com-

bining the above arguments along with those in Sections 7.2 through 7.7, we can show that

several other optimization problems can be approximated in a similar fashion. Again it is easy

24

to see that the technique extends to problems for arbitrary instances and also to problems for

instances speci�ed using k-narrow 1-FPN-speci�cations. Thus we have the following theorem.

Theorem 7.14 For all �xed k � 1, � > 0 and for all of the problems � stated in Section 7.7,

there are polynomial time approximation algorithms with performance guarantee10 (1 + �) �

FBEST� for problems �, when speci�ed using k-level restricted 1-FPN-speci�cations. Here

FBEST� denotes the best known performance guarantee of an algorithm for the problem �

for instances speci�ed using standard speci�cations.

Observe that the technique used to devise approximation algorithms for problems re-

stricted to k-narrow 1-FPN-speci�ed instances is very similar to the technique used to devise

approximation algorithms for k-level-restricted L-speci�ed problems. But there are two im-

portant di�erences in the details of the algorithms.

1. In case of algorithms for L-speci�ed problems, the number of equivalence classes is O(n)

where n is the number of nonterminals. In contrast, the number of equivalence classes

in case of algorithms for 1-FPN-speci�ed problems is only O(1).

2. The size of the subgraphs for which the problem is solved near optimally also di�ers

signi�cantly. Speci�cally, the number of explicit vertices in PE(Gl
i) can be O(N l).

Moreover the time required to compute PE(Gl
i) can be O(N l+k). In contrast, the

number of explicit vertices in each H(lip; r
i
p) is only O(N) and the time required to

construct each H(lip; r
i
p) is only O(N). In both cases we use N to be the vertex number

of the respective speci�cations �) (N can be O(size(�)).

These important di�erences allow us to devise linear time approximation schemes for

1-FPN-speci�ed problems.

8 Conclusions

8.1 Summary

We have investigated the polynomial time approximability of several PSPACE-hard optimiza-

tion problems for both L- and 1-FPN-speci�ed instances. A general approach was given to

obtain polynomial time approximation schemes for several PSPACE-hard optimization prob-

lems for planar graphs speci�ed using k-level restricted L- or 1-FPN-speci�cations.

In [HM+94a], we used the technique of partial expansion to obtain polynomial time ap-

proximation schemes for geometric intersection graphs speci�ed using a restricted form of

the hierarchical speci�cations proposed by Bentley, Ottmann and Widmayer [BOW83]. We

believe that the partial expansion technique can be used to obtain e�cient approximations

for other problems speci�ed using L- or 1-FPN-speci�cations as well as for problems speci�ed

using other succinct speci�cations.

10For the sake of uniformity we assume that the performance guarantee is � 1.

25

In an accompanying paper [MH+95a], we investigate the decision complexity of vari-

ous combinatorial problems speci�ed using various kinds of L-speci�cations and 1-FPN-

speci�cations. There we give a general method to obtain PSPACE-hard lower bounds for

such problems including the ones discussed here.

8.2 Open Problems

We conclude with a list of open problems for future research.

1. Can we use the concept of Debate systems [CF+93, CF+94] to prove non-approximability

results for problems speci�ed using arbitrary (not level-restricted) L-speci�cations ?

Recently, Agarwal and Condon [AC95] have partially answered this question by showing

that unless P = PSPACE, there is no polynomial time approximation scheme for the

problem l-max-3sat. The result was proved by using the characterization of PSPACE

in terms of random debate systems. In [HMS94], we extended their result to hold for

any l-max-sat(S) such that Rep(S) denotes the set of all �nite arity Booelan relations.

2. Recently, several researchers have considered logical de�nability of a number of opti-

mization problems and de�ned appropriate classes such as MAX SNP MAX �1 MAX

NP and MAX #P (cf. [KT94, Kan92b, PY91, PR93]). All these researchers have as-

sumed the the input is speci�ed using standard speci�cations. What happens if the

instances (�nite or in�nite) are speci�ed succinctly ?

Some work has been done along these lines by Hirst and Harel [HH93]. Speci�cally,

they considered in�nite recursive versions of several NP optimization problems. They

prove that some problems become highly undecidable (in terms of Turing degrees) while

others remain on low levels of arithmetic hierarchy. As a corollary of their results they

provide a method for proving (�nitary) problems to be outside the syntactic class MAX

NP and hence outside MAX SNP.

Acknowledgements: We thank the referees for their invaluable comments. We also thank

Anne Condon, Ashish Naik, Egon Wanke, Joan Feigenbaum, R. Ravi, S.S. Ravi and Thomas

Lengauer for many helpful conversations during the course of writing this paper.

26

References

[AC95] S. Agarwal and A. Condon, \On Approximation Algorithms for Hierarchical
MAX-SAT," Proc. 10th IEEE Annual Conference on Structure in Complexity
Theory, June 1995, pp. 181-190.

[AL+92] S. Arora, C. Lund, R. Motwani, M. Sudan and M Szegedy, \Proof Veri�cation and
Hardness of Approximation Problems," Proc. 33rd IEEE Symposium on Founda-
tions of Computer Science (FOCS), 1992, pp. 14-23.

[Ba83] B.S. Baker, \Approximation Algorithms for NP-Complete Problems on Planar
Graphs," Journal of the ACM (J. ACM), Vol. 41, No. 1, 1994, pp. 153-180.

[BG+95] M. Bellare, O. Goldreich and M. Sudan, \Free Bits, PCPs and Non-
Approximability { Towards Tight Results," Proc. 36rd IEEE Symposium on Foun-
dations of Computer Science (FOCS'95), Oct. 1995, pp. 422{431.

[BOW83] J.L. Bentley, T. Ottmann and P. Widmayer, \The Complexity of Manipulating
Hierarchically De�ned set of Rectangles," Advances in Computing Research, ed.
F.P. Preparata, Vol. 1, (1983), pp. 127-158.

[CM91] E. Cohen and N. Megiddo, \Recognizing Properties of Periodic graphs," Ap-
plied Geometry and Discrete Mathematics, Vol. 4, The Victor Klee Festschrift, P.
Gritzmann and B. Strumfels, eds., ACM, New York, 1991, pp. 135-146.

[CM93] E. Cohen and N. Megiddo, \Strongly Polynomial-time and NC Algorithms for
Detecting Cycles in Dynamic Graphs," Journal of the ACM (J. ACM) Vol. 40,
No. 4, September 1993, pp. 791-830.

[CF+93] A. Condon, J. Feigenbaum, C. Lund and P. Shor, \Probabilistically Checkable
Debate Systems and Approximation Algorithms for PSPACE-Hard Functions,"
in Proc. 25th ACM Symposium on Theory of Computing (STOC), 1993, pp. 305-
313.

[CF+94] A. Condon, J. Feigenbaum, C. Lund and P. Shor, \Random Debators and the
Hardness of Approximating Stochastic functions," Proc. 9th IEEE Annual Con-
ference on Structure in Complexity Theory, June 1994, pp. 280-293.

[Ga59] D. Gale, \Transient Flows in Networks," Michigan Mathematical Journal, No. 6,
1959 , pp. 59-63.

[Ga82] H. Galperin \Succinct Representation of Graphs," Ph.D. Thesis, Princeton Uni-
versity, 1982.

[GJ79] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness, Freeman, San Francisco CA, 1979.

[GJM91] C. Ghezzi, M. Jazayeri and D. Mandrioli, Fundamentals of Software Engineering,
Prentice Hall, Englewood Cli�s, NJ, 1991.

[GW94] M.X. Goemans and D.P. Williamson \.878 Approximation Algorithms for MAX
CUT and MAX 2SAT," Proc. 26th Annual ACM Symposium on Theory of Com-
puting, (STOC), May 1994, pp. 422-431. To appear in Journal of the ACM (J.
ACM).

27

[HK87] A. Habel and H.J. Kreowski, \ May we Introduce to you: Hypergraph Languages
Generated by Hyperedge Replacement," Proc. 13th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG'87), Springer Verlag, LNCS,
Vol. 291, 1987, pp. 15-26.

[Ha75] F.O. Hadlock, \Finding a Maximum Cut in a Planar Graph in Polynomial Time,"
SIAM Journal on Computing, No. 4, 1975, pp. 221-225.

[HH93] T. Hirst, D. Harel, \Taking it to the Limit: On In�nite Variants of NP-Complete
Problems," Proc. 8th IEEE Annual Conference on Structure in Complexity The-
ory (Structures' 93), June, 1993, pp. 292-304.

[HLW92] F. H�ofting, T. Lengauer and E. Wanke, \Processing of Hierarchically De�ned
Graphs and Graph Families," Data Structures and E�cient Algorithms (Final
Report on the DFG Special Joint Initiative), Springer-Verlag, LNCS 594, 1992,
pp. 44-69.

[HW92] F. H�ofting and E. Wanke, \Minimum Cost Paths in Periodic Graphs," SIAM
Journal on Computing, Vol. 24, No. 5, 1995, pp. 1051-1067.

[HM+94a] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz
and R. E. Stearns, \A Uni�ed Approach to Approximation Schemes for NP- and
PSPACE-Hard Problems for Geometric Graphs," Proc. 2nd Annual European
Symposium on Algorithms (ESA'94), September, 1994, pp. 424-435.

[HM+94c] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, D.J. Rosenkrantz and R.E.
Stearns, \Designing Approximation Schemes Using L-Reductions," in Proc. of
the 14th Annual Foundations of Software Technology and Theoretical Computer
Science (FST &TCS), Madras, India, December, 1994, pp. 342-353.

[HMS94] H.B. Hunt III, M.V. Marathe and R.E. Stearns, \Generalized CNF Satis�ability
Problems and Non-E�cient Approximability," Proc. 9th IEEE Conf. on Structure
in Complexity Theory, June-July 1994, pp. 356-366. A detailed version of the
paper as University at Albany Technical Report, TR-95-27, May 1995.

[IS87] K. Iwano and K. Steiglitz, \Testing for Cycles in In�nite Graphs with Peri-
odic Structure," Proc. 19th Annual ACM Symposium on Theory of Computing,
(STOC), 1987, pp. 46-53.

[IS88] K. Iwano and K. Steiglitz, \Planarity Testing of Doubly Connected Periodic In-
�nite Graphs," Networks, No. 18, 1988, pp. 205-222.

[Kan92b] V. Kann, \On the Approximability of NP-complete Optimization Problems,"
Ph.D. Thesis, Dept. of Numerical Analysis and Computing Science, Royal In-
stitute of Technology, Stockholm, Sweden, May 1992.

[KMW67] R.M. Karp, R.E. Miller and S. Winograd, \The Organization of Computations
for Uniform Recurrence Equations," Journal of the ACM (J. ACM), Vol. 14, No.
3, 1967, pp. 563-590.

[KO91] M. Kodialam and J.B. Orlin, \Recognizing Strong Connectivity in Periodic graphs
and its relation to integer programming," Proc. 2nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1991, pp. 131-135.

[KT94] P. G. Kolaitis and M.N. Thakur, \Logical De�nability of NP Optimization Prob-
lems," Information and Computation, No. 115, 1994, pp. 321-353.

28

[KS88] K. R. Kosaraju and G.F. Sullivan, \Detecting Cycles in Dynamic Graphs in Poly-
nomial Time," Proc. 29th IEEE Symposium on Foundations of Computer Science
(FOCS), 1988, pp. 398-406.

[Le82] T. Lengauer, \The Complexity of Compacting Hierarchically Speci�ed Layouts of
Integrated Circuits," Proc. 23rd IEEE Symposium on Foundations of Computer
Science (FOCS), 1982, pp. 358-368.

[Le86] T. Lengauer, \Exploiting Hierarchy in VLSI Design," Proc. AWOC '86, Springer
Verlag, LNCS 227, 1986, pp. 180-193.

[LW87a] T. Lengauer and E. Wanke, \E�cient Solutions for Connectivity Problems for
Hierarchically De�ned Graphs," SIAM Journal on Computing, Vol. 17, No. 6,
1988, pp. 1063-1080.

[LW87b] T. Lengauer and C. Weiner, \E�cient Solutions Hierarchical Systems of Linear
Equations," Computing, Vol 39, 1987, pp. 111-132.

[Le88] T. Lengauer, \E�cient Algorithms for Finding Minimum Spanning Forests of
Hierarchically De�ned graphs," Journal of Algorithms, Vol. 8, 1987, pp. 260-284.

[Le89] T. Lengauer, \Hierarchical Planarity Testing," Journal of the ACM (J. ACM),
Vol. 36, No. 3, July 1989, pp. 474-509.

[Le90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley
and Sons, 1990.

[LW92] T. Lengauer and K.W. Wagner, \The Correlation Between the Complexities of
Non-Hierarchical and Hierarchical Versions of Graph Problems," Journal of Com-
puter and System Sciences (JCSS), Vol. 44, 1992, pp. 63-93.

[LW93] T. Lengauer and E. Wanke, \E�cient Decision Procedures for Graph Properties
on Context-Free Graph Languages," Journal of the ACM (J. ACM), Vol. 40, No.
2, 1993, pp. 368-393.

[Li82] D. Lichtenstein, \Planar Formulae and their Uses," SIAM Journal on Computing,
Vol 11, No. 2, May 1982 , pp. 329-343.

[MH+93a] M.V. Marathe H.B. Hunt III, and S.S. Ravi, \The Complexity of Approximating
PSPACE-Complete Problems for Hierarchical Speci�cations," Nordic Journal of
Computing, Vol. 1, 1994, pp. 275-316.

[MR+93] M.V. Marathe, V. Radhakrishnan, H.B. Hunt III, and S.S. Ravi, \Hierarchi-
cal Speci�ed Unit Disk Graphs," Proc. 19th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG '93), June, 1993, pp. 21-32. To
appear in Theoretical Computer Science.

[Ma94] M.V. Marathe, Complexity and Approximability of NP- and PSPACE-hard Opti-
mization Problems, Ph.D. thesis, Department of Computer Science, University at
Albany, Albany, NY August, 1994.

[MH+95a] M.V. Marathe, H.B. Hunt III, R.E. Stearns and V. Radhakrishnan, \Complexity
of Hierarchically and 1-Dimensional Periodically Speci�ed Problems," Technical
Report LAUR-93-3348, Los Alamos National Laboratory, August, 1995. Also to
be presented at the DIMACS Workshop on Satis�ability Problem: Theory and
Applications, March 1996.

29

[MH+95c] M.V. Marathe, H.B. Hunt III and R.E. Stearns \A Uniform Approach to prove
NEXPTIME-hardness for problems speci�ed by G.C.R, S.C.R and BOW Speci�-
cations," manuscript, November 1995.

[MTM92] J.O. McClain, L.J. Thomas and J.B. Mazzola, Operations Management, Prentice
Hall, Englewood Cli�s, 1992.

[MC80] C. Mead and L. Conway, Introduction to VLSI systems, Addison Wesley, 1980.

[Or82a] J.B. Orlin, \The Complexity of Dynamic/Periodic Languages and Optimization
Problems," Sloan W.P. No. 1679-86, July 1985, Working paper, Alfred P. Sloan
School of Management, MIT, Cambridge, MA 02139. A Preliminary version of the
paper appears in Proc. 13th ACM Annual Symposium on Theory of Computing
(STOC), 1981, pp. 218-227.

[Or84a] J.B. Orlin, \Maximum Convex Cost Dynamic Network Flows," Mathematics for
Operations Research, Vol. 9, No. 2, May 1984, pp. 190-206.

[Or84b] J.B. Orlin, \Some Problems on Dynamic/Periodic Graphs," Progress in Combi-
natorial Optimization, Academic Press, May 1984, pp. 273-293.

[PR93] A. Panconesi and D. Ranjan, \Quanti�ers and Approximations," Theoretical
Computer Science, 107, 1993, pp. 145-163.

[PY86] C. Papadimitriou and M. Yannakakis, \A note on Succinct Representation of
Graphs," Information and Computation, No. 71, 1986, pp. 181-185.

[PY91] C. Papadimitriou and M. Yannakakis, \Optimization, Approximation and Com-
plexity Classes," Journal of Computer and System Sciences (JCSS), No. 43, 1991,
pp. 425-440.

[Pa94] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[RH93] D.J. Rosenkrantz and H.B. Hunt III, \The Complexity of Processing Hierarchical
Speci�cations," SIAM Journal on Computing, Vol. 22, No. 3, 1993, pp. 627-649.

[Sc78] T. Schaefer, \The Complexity of Satis�ability Problems," Proc. 10th ACM Sym-
posium on Theory of Computing (STOC), 1978, pp. 216-226.

[Wa84] K.W. Wagner, \The Complexity of Problems Concerning Graphs with Regulari-
ties," Proc. 11th Symposium on Math. Foundations of Computer Science (MFCS),
LNCS 176, Springer-Verlag, 1984, pp. 544-552.

[Wa93] E. Wanke, \Paths and Cycles in Finite Periodic Graphs," Proc. 20th Symposium
on Math. Foundations of Computer Science (MFCS), LNCS 711, Springer-Verlag,
1993, pp. 751-760.

[Wi90] M. Williams, \E�cient Processing of Hierarchical Graphs," TR 90-06, Dept
of Computer Science, Iowa Sate University. (Parts of the report appeared in
WADS'89, pp. 563-576 and SWAT'90, pp. 320-331 coauthored with Fernandez-
Baca.)

[Ya92] M. Yannakakis, \On the Approximation of Maximum Satis�ability," J. of Algo-
rithms, Vol. 17, 1994, pp. 475{502.

30

